Conserved structure and spatiotemporal function of the compact rhodopsin kinase (GRK1) enhancer/promoter.
نویسندگان
چکیده
PURPOSE To demonstrate that the crucial elements responsible for the spatial and temporal expression patterns of rhodopsin kinase (Rk) are contained within a narrow conserved segment immediately flanking the Rk transcription start sites. METHODS Sequences upstream of the mouse Rk gene were compared to the human sequence to identify areas of conservation. Transgenic mice carrying a segment of the conserved human DNA sequence linked upstream of the green fluorescent protein (GFP) gene were examined by fluorescence microscopy and RT-PCR to localize GFP expression in retina and pineal gland. Rk and GFP temporal expression patterns were further compared by immunostaining and real-time RT-PCR in transgenic eyes during development. RESULTS Comparison of the mouse and human 5' flanking sequence revealed only a small island of conserved sequence upstream of the respective Rk start sites. Uniform GFP expression was supported by a 0.2 kb fragment of the conserved human sequence in the transgenic mouse rods, cones, and pinealocytes. Developmental studies revealed an exponential rise in Rk and GFP transcripts in the first ten day postnatal period followed by a plateau later extending to adulthood. Rk and GFP proteins were first detected after postnatal day 10 and rose in parallel afterwards, overlapping in time with the maturation of photoreceptor outer segments and eye opening. CONCLUSIONS The conserved short enhancer/promoter immediately upstream of the Rk gene contains the key elements required for appropriate response to spatial and temporal cues during photoreceptor cell differentiation and fate determination. The above studies narrow the core sequences that govern gene expression in photoreceptors in vivo.
منابع مشابه
Structure of a monomeric variant of rhodopsin kinase at 2.5 Å resolution.
G protein-coupled receptor kinase 1 (GRK1 or rhodopsin kinase) phosphorylates activated rhodopsin and initiates a cascade of events that results in the termination of phototransduction by the receptor. Although GRK1 seems to be a monomer in solution, seven prior crystal structures of GRK1 revealed a similar domain-swapped dimer interface involving the C-terminus of the enzyme. The influence of ...
متن کاملVariation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors.
PURPOSE Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Ab...
متن کاملKnockdown of Cone-Specific Kinase GRK7 in Larval Zebrafish Leads to Impaired Cone Response Recovery and Delayed Dark Adaptation
Phosphorylation of rhodopsin by rhodopsin kinase GRK1 is an important desensitization mechanism in scotopic vision. For cone vision GRK1 is not essential. However, cone opsin is phosphorylated following light stimulation. In cone-dominant animals as well as in humans, but not in rodents, GRK7, a cone-specific homolog of GRK1, has been identified in cone outer segments. To investigate the functi...
متن کاملCharacterization of human GRK7 as a potential cone opsin kinase.
PURPOSE Homozygous inactivation of the mouse gene for GRK1 (G protein-coupled receptor kinase 1, or rhodopsin kinase) causes severe defects in the recovery of cone phototransduction. However, electroretinographic (ERG) analyses of human oguchi patients with defective GRK1 alleles showed normal or slightly abnormal photopic responses. It remains unclear why the loss of GRK1 yields such different...
متن کاملSubstrate-induced changes in the dynamics of rhodopsin kinase (G protein-coupled receptor kinase 1).
G protein-coupled receptor (GPCR) kinases (GRKs) instigate the desensitization of activated GPCRs via phosphorylation that promotes interaction with arrestins, thereby preventing the interaction of GPCRs with heterotrimeric G proteins. A current proposed model of GRK1 activation involves the binding of activated rhodopsin (Rho*) to the N-terminal region of GRK1. Perhaps concomitantly, this N-te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular vision
دوره 11 شماره
صفحات -
تاریخ انتشار 2005